Performance validation of deformable image registration in the pelvic region
نویسندگان
چکیده
Patients undergoing radiotherapy will inevitably show anatomical changes during the course of treatment. These can be weight loss, tumour shrinkage, and organ motion or filling changes. For advanced and adaptive radiotherapy (ART) information about anatomical changes must be extracted from repeated images in order to be able to evaluate and manage these changes. Deformable image registration (DIR) is a tool that can be used to efficiently gather information about anatomical changes. The aim of the present study was to evaluate the performance of two DIR methods for automatic organ at risk (OAR) contour propagation. Datasets from ten gynaecological patients having repeated computed tomography (CT) and cone beam computed tomography (CBCT) scans were collected. Contours were delineated on the planning CT and on every repeated scan by an expert clinician. DIR using our in-house developed featurelet-based method and the iPlan(®) BrainLab treatment planning system software was performed with the planning CT as reference and a selection of repeated scans as the target dataset. The planning CT contours were deformed using the resulting deformation fields and compared to the manually defined contours. Dice's similarity coefficients (DSCs) were calculated for each fractional patient scan structure, comparing the volume overlap using DIR with that using rigid registration only. No significant improvement in volume overlap was found after DIR as compared with rigid registration, independent of which image modality or DIR method was used. DIR needs to be further improved in order to facilitate contour propagation in the pelvic region in ART approaches.
منابع مشابه
A Study on Robustness of Various Deformable Image Registration Algorithms on Image Reconstruction Using 4DCT Thoracic Images
Background: Medical image interpolation is recently introduced as a helpful tool to obtain further information via initial available images taken by tomography systems. To do this, deformable image registration algorithms are mainly utilized to perform image interpolation using tomography images.Materials and Methods: In this work, 4DCT thoracic images of five real patients provided by DI...
متن کاملEvaluation of deformable image registration in HDR gynecological brachytherapy
Introduction: In brachytherapy, as in external radiotherapy, image-guidance plays an important role. For GYN treatments it is standard to acquire at least CT images and preferably MR images prior to each treatment and to calculate the dose of the day on each set of images. Then, the dose to the target and to the organs at risk (OAR) is calculated with worst case scenario from I...
متن کاملA Hybrid 3D Colon Segmentation Method Using Modified Geometric Deformable Models
Introduction: Nowadays virtual colonoscopy has become a reliable and efficient method of detecting primary stages of colon cancer such as polyp detection. One of the most important and crucial stages of virtual colonoscopy is colon segmentation because an incorrect segmentation may lead to a misdiagnosis. Materials and Methods: In this work, a hybrid method based on Geometric Deformable Models...
متن کاملA Novel Intensity Similarity Metric with Soft Spatial Constraint for a Deformable Image Registration Problem in Radiation Therapy
In this paper we propose a novel similarity metric and a method for deformable registration of two images for a specific clinical application. The basic assumption in almost all deformable registration approaches is that there exist explicit correspondences between pixels across the two images. This principle is used to design image (dis)similarity metrics, such as sum of squared differences (S...
متن کاملValidating Dose Uncertainty Estimates Produced by AUTODIRECT: An Automated Program to Evaluate Deformable Image Registration Accuracy
Deformable image registration is a powerful tool for mapping information, such as radiation therapy dose calculations, from one computed tomography image to another. However, deformable image registration is susceptible to mapping errors. Recently, an automated deformable image registration evaluation of confidence tool was proposed to predict voxel-specific deformable image registration dose m...
متن کامل